Applying Bayesian data analysis to learn about periodic modulations in pulsars

Gregory Ashton
Supervisors: Ian Jones \& Reinhard Prix

- Pulsars allow us to study the composition and structure of neutron stars
- Variations in the arrival time of pulsations, often termed timing-noise, tell us that we have unmodelled physics
- There is a lot of variation in the observed timing-noise, but a few show highly periodic variations $\sim 1-10$ yrs

- Today I will discuss two models able to explain these periods

Periodic modulations: B1828-11

- Demonstrates periodic modulations at 500 days (with harmonics)
- Periodicity observed in: timing-residual, beam-width, frequency, and spin-down rate

Data courtesy of Lyne at al. (2010)

- One explanation for these modulation is precession

B1828-11: The data

Precession explains the smoothly modulated double-peaked spin-down

However, the beam-width appears to suddenly switch between two states

Model: Switching

- Lyne et al. (2010): the magnetosphere undergoes sudden periodic switching between two states
- The smooth modulation in the spin-down is due to time-averaging of this underlying spin-down model
- To explain the double-peak, Perera (2014) suggested four times were required

- Lyne (2010) reject precession in favour of 'switching' model

There are arguments for and against both the precession and switching models, but is there enough evidence to rule either out?

Bayesian data analysis: Model comparison

We would like to quantify how well the two models fit the data. To do this we will use Bayes theorem:

$$
\begin{equation*}
P\left(\mathcal{M}_{j} \mid \mathbf{y}_{\text {obs }}\right)=P\left(\mathbf{y}_{\text {obs }} \mid \mathcal{M}_{j}\right) \frac{P\left(\mathcal{M}_{j}\right)}{P\left(\mathbf{y}_{\text {obs }}\right)} \tag{1}
\end{equation*}
$$

The odds ratio:

$$
\begin{equation*}
\mathcal{O}=\frac{P\left(\mathcal{M}_{A} \mid \mathbf{y}_{\mathrm{obs}}\right)}{P\left(\mathcal{M}_{B} \mid \mathbf{y}_{\mathrm{obs}}\right)}=\frac{P\left(\mathbf{y}_{\mathrm{obs}} \mid \mathcal{M}_{A}\right)}{P\left(\mathbf{y}_{\mathrm{obs}} \mid \mathcal{M}_{B}\right)} \frac{P\left(\mathcal{M}_{A}\right)}{P\left(\mathcal{M}_{B}\right)} \tag{2}
\end{equation*}
$$

If we have no preference for one model or the other then set

$$
\begin{equation*}
\frac{P\left(\mathcal{M}_{A}\right)}{P\left(\mathcal{M}_{B}\right)}=1 \tag{3}
\end{equation*}
$$

and 'let the data speak for itself'

Bayesian data analysis: Model fitting

For a signal in noise:

$$
\begin{equation*}
y^{\mathrm{obs}}\left(t_{i} \mid \mathcal{M}_{j}, \vec{\theta}\right)=f\left(t_{i} \mid \mathcal{M}_{j}, \vec{\theta}\right)+n\left(t_{i}\right) \tag{4}
\end{equation*}
$$

If the noise is stationary and can be described by a normal distribution:

$$
\begin{equation*}
y^{\mathrm{obs}}\left(t_{i} \mid \mathcal{M}_{j}, \vec{\theta}\right)-f\left(t_{i} \mid \mathcal{M}_{j}, \vec{\theta}\right) \sim N(0, \sigma) \tag{5}
\end{equation*}
$$

Then the Likelihood is:

$$
\begin{equation*}
P\left(y_{i}^{\mathrm{obs}} \mid \mathcal{M}_{j}, \vec{\theta}, \sigma\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{\frac{-\left(f\left(t_{i} \mid \mathcal{M}_{j}, \vec{\theta}\right)-y_{i}\right)^{2}}{2 \sigma^{2}}\right\} \tag{6}
\end{equation*}
$$

We use Markov chain Monte Carlo (MCMC) methods to 'fit' the model to the data. First we check that we have a good fit, then calculate the odds-ratio.

Precession model:

Switching model:

$$
\frac{P\left(\mathcal{M}_{\text {Precession }} \mid \mathbf{y}_{\text {obs }}\right)}{P\left(\mathcal{M}_{\text {switching }} \mid \mathbf{y}_{\text {obs }}\right)} \approx 1
$$

- We should use data analysis tools to quantify our belief in models
- For the spin-down alone, there is no evidence to suggest switching is preferable to precession
- We now combine the spin-down and beam width date to fully resolve the question
- In the future, we intend to form a hybrid model where the precession biases the switching

