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Motivation 2/10

I Pulsars allow us to study the composition and structure of neutron
stars

I Variations in the arrival time of pulsations, often termed timing-noise,
tell us that we have unmodelled physics

I There is a lot of variation in the observed timing-noise, but a few
show highly periodic variations ‰ 1` 10 yrs

I Today I will discuss two models able to explain these periods



Periodic modulations: B1828-11 3/10

I Demonstrates periodic modulations at 500 days (with harmonics)

I Periodicity observed in: timing-residual, beam-width, frequency, and
spin-down rate
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: Data courtesy of Lyne at al. (2010)

I One explanation for these modulation is precession



B1828-11: The data 4/10

Precession explains the smoothly modulated double-peaked spin-down
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: Data courtesy of Lyne at al. (2010)

However, the beam-width appears to suddenly switch between two states



Model: Switching 5/10

I Lyne et al. (2010): the
magnetosphere undergoes
sudden periodic switching
between two states

I The smooth modulation in
the spin-down is due to
time-averaging of this
underlying spin-down model

I To explain the double-peak,
Perera (2014) suggested four
times were required

I Lyne (2010) reject precession
in favour of ‘switching’
model
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There are arguments for and against both the precession and switching
models, but is there enough evidence to rule either out?



Bayesian data analysis: Model comparison 6/10

We would like to quantify how well the two models fit the data. To do
this we will use Bayes theorem:

P(Mj jyobs) = P(yobsjMj )
P(Mj )

P(yobs)
: (1)

The odds ratio:

O =
P(MAjyobs)
P(MB jyobs)

=
P(yobsjMA)

P(yobsjMB)

P(MA)

P(MB)
: (2)

If we have no preference for one model or the other then set

P(MA)

P(MB)
= 1: (3)

and ‘let the data speak for itself’



Bayesian data analysis: Model fitting 7/10

For a signal in noise:

yobs(ti jMj ; ~„) = f (ti jMj ; ~„) + n(ti ) (4)

= +

If the noise is stationary and can be described by a normal distribution:

yobs(ti jMj ; ~„)` f (ti jMj ; ~„) ‰ N(0; ff) (5)

Then the likelihood is:

P(yobsi jMj ; ~„; ff) =
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We use Markov chain Monte Carlo (MCMC) methods to ‘fit’ the model to
the data. First we check that we have a good fit, then calculate the

odds-ratio.



Bayesian data analysis: Checking the fit 8/10

Precession model:
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Switching model:
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Results 9/10

P(MPrecessionjyobs)
P(MSwitchingjyobs)

ı 1



Conclusions 10/10

I We should use data analysis tools to quantify our belief in models

I For the spin-down alone, there is no evidence to suggest switching is
preferable to precession

I We now combine the spin-down and beam width date to fully resolve
the question

I In the future, we intend to form a hybrid model where the precession
biases the switching


